GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training

M. Yu, Z. Lin, K. Narra, S. Li, Y. Li, N. S. Kim, A. Schwing, M. Annavaram, S. Avestimehr

Mitigating the communication bottleneck in distributed CNN training

Ring all-reduce

Decentralization:

Node-0

Node-1

Node-2

/

Why Linear Quantization?

Master

1\

Step-1
— 9o1
910 911

920

921

9o2
912)
922

Parameter server

4

parallel aggregation

)&=t

Step-2
9oo 901 !902 + G22
v
)i
920 911"‘921“ 920

Quantization: sacrifice precision for bandwidth
* Limited to non-linear scalar quantizer [1,2]

Only linear quantizer can be hidden behind parallel aggregation!

Add

Comp

Send

With a non-linear quantizer, each node must:
decompress the gradient vector it has

1.

Comp

| Download | Add

Time at a node

Send

[
L

2.
3.

Aggregated

900

2
Zi=o 9i1

9o2 T 922

9oo + 910

911

2
Zi:o 9i2

received;

add its own gradient vector to it;

g1 T 921

922

compress the result

With a linear quantizer. each node only needs to:

1.

compress its own gradient vector WHILE downloading;

2. directly add the compressed gradient vectors;

3. asingle decompression after aggregation finishes

Time at a node

»

Conv. Layer-x -

How to capture the linearity?

[apply scalar quantization in uncompressed iterations]

N\

y)
[

P
[§

PCA

= mm e ms (-

\I-l-l-l-—

| |
']
| |
[|
¥

7

Gradient

|] slices

Warmup

CNN Training iterations

Uncompressed lterations
Have PCA Computation

Uncompressed lterations
No PCA Computation

Thanks to temporal persistency, we can invest time on PCA training;
Thanks to spatial consistency, only need one PCA per layer;

Low complexity;
Compression is fully hidden behind RAR

lterations with
compressed
aggregation

[1] F.Seide,H.Fu,).Droppo,G.Li,andD.Yu,“1-bit stochastic gradient descent and its application to data-parallel
distributed training of speech DNNs,” INTERSPEECH, 2014
[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-efficient SGD via gradient

guantization and encoding,” NIPS, 2017.

University of Southern California

University of Illlinois at Urbana—Champaign

GradiVeQ

The First Linear Vector Quantizer

for CNN Gradients!

Node-0

Node-2

™

| go |
| 1 1 |
Goo! Go1! 9o2
U U, U,

960 961 9do2

Ring All-Reduce
Aggregation

ZQ(%) =Q (Z 97:)

slice

compress

U, € R¥™¥ js the PCA matrix for slice i
g.:=U;gji with compression ratio K/d
In GradiVeQ, only U, is computed and re-used to
compress all slices in a conv. layer
After aggregation, multiply by U, to decompress

USC

Node-1

I ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

«910
<jg11
<]912

How could linearity be possible?

F filters
‘ x
))
H
W

.' virtual flatten

i.ﬁu' 7D i 9 of one conv. layer

r "~ _FDW

Linearity with excellent features:
e Strong linear correlation
 Temporal persistency

e Spatial consistency

Compression loss
o o o
£~y [@)] (o]

©
N

0.0

The loss of using the compressor of the first K
gradient to compress the remaining gradients

s 256 512 768 1024

Compression ratio

200 400 600 800 1000 1200
Slice size K

How do we do wall-clock wise?

Training ResNet-32 using CIFAR-100

- Training time (CPUs) Training time (GPUs) Top-1 accuracy

Baseline RAR 135,000 s
4-bit QSGD 90,000 s
GradiVeQ 76,000 s

Total Training Time for 500 iterations (CPUs)
1600
1400
1200
1000
800
600
400
200

seconds

Uncompressed 4-Bit-QSGD GradiVeQ
gradients aggregate time through Ring All Reduce

gradients compute and weights update time

* 8x compression ratio
e 1.5x faster than baseline
e 1.2x faster than 4-bit-QSGD

75,000 s

30,000 s

24,000 s

1000

800

600

400

seconds

200

67.6%

66.7%

66.6%

Total Training Time for 500 iterations (GPUs)

Uncompressed 4-Bit-QSGD GradiVeQ

gradients aggregate time through Ring All Reduce

gradients compute and weights update time

* 8x compression ratio
e 4x faster than baseline
e 1.6x faster than 4-bit-QSGD

