GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training
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Mitigating the communication bottleneck in distributed CNN training
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Why Linear Quantization?
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Quantization: sacrifice precision for bandwidth
* Limited to non-linear scalar quantizer [1,2]

Only linear quantizer can be hidden behind parallel aggregation!
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With a non-linear quantizer, each node must:
decompress the gradient vector it has
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received;

add its own gradient vector to it;
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With a linear quantizer. each node only needs to:

1.

compress its own gradient vector WHILE downloading;

2. directly add the compressed gradient vectors;

3. asingle decompression after aggregation finishes
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How to capture the linearity?

[ apply scalar quantization in uncompressed iterations ]
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CNN Training iterations

Uncompressed lterations
Have PCA Computation

Uncompressed lterations
No PCA Computation

Thanks to temporal persistency, we can invest time on PCA training;
Thanks to spatial consistency, only need one PCA per layer;

Low complexity;
Compression is fully hidden behind RAR

lterations with
compressed
aggregation
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GradiVeQ

The First Linear Vector Quantizer

for CNN Gradients!
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U, € R¥™¥ js the PCA matrix for slice i
g.:=U;gji with compression ratio K/d
In GradiVeQ, only U, is computed and re-used to
compress all slices in a conv. layer
After aggregation, multiply by U, to decompress
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How could linearity be possible?
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Linearity with excellent features:
e Strong linear correlation
 Temporal persistency

e Spatial consistency
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The loss of using the compressor of the first K
gradient to compress the remaining gradients
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How do we do wall-clock wise?

Training ResNet-32 using CIFAR-100

- Training time (CPUs) Training time (GPUs) Top-1 accuracy

Baseline RAR 135,000 s
4-bit QSGD 90,000 s
GradiVeQ 76,000 s

Total Training Time for 500 iterations (CPUs)
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Uncompressed 4-Bit-QSGD GradiVeQ
gradients aggregate time through Ring All Reduce

gradients compute and weights update time

* 8x compression ratio
e 1.5x faster than baseline
e 1.2x faster than 4-bit-QSGD
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Total Training Time for 500 iterations (GPUs)

Uncompressed 4-Bit-QSGD GradiVeQ

gradients aggregate time through Ring All Reduce

gradients compute and weights update time

* 8x compression ratio
e 4x faster than baseline
e 1.6x faster than 4-bit-QSGD




