

BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling

Cheng Wan*, Youjie Li*, Ang Li, Nam Sung Kim, Yingyan Lin

MLSys 2022

Convolutional Neural Networks (CNNs) are powerful in image classification

How to incorporate relationship among data samples?

Graph Convolutional Network (GCN) the SOTA model for capturing relationship

- Input Features
- 1 Neighbor Aggregation (e.g., average pooling)

- Input Features
- 1 Neighbor Aggregation (e.g., average pooling)

- Input Features
- 1 Neighbor Aggregation (e.g., average pooling)
- 2 Feature Update (e.g., MLP)

How to compute the embedding of node u?

- Input Features
- 1 Neighbor Aggregation (e.g., average pooling)
- 2 Feature Update (e.g., MLP)

Output embedding can be fed to the next GCN layer

How to compute the embedding of node u?

- Input Features
- 1 Neighbor Aggregation (e.g., average pooling)
- 2 Feature Update (e.g., MLP)

Output embedding can be fed to the next GCN layer

or be used to downstream tasks

(e.g., node classification)

Amazon Co-Purchase Dataset [1,2]

9.4M nodes

231M edges

Amazon Co-Purchase Dataset [1,2]

9.4M nodes

231M edges

>100GB memory for a 3-layer GCN

>100GB training

>100GB training

NOT fit

16GB V100

How to train a GCN at scale? Efficiently?

Category I

Storage in CPU

Storage in CPU

Training in GPU

Category I: Swap-Based Methods

^[1] Ma et al. NeuGraph: Parallel Deep Neural Network Computation on Large Graphs. USENIX ATC'19

^[2] Jia et al. Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc. MLSys'20

Category I: Swap-Based Methods

Pro: Scalability of Graph Con: Expensive CPU-GPU Swap

^[1] Ma et al. NeuGraph: Parallel Deep Neural Network Computation on Large Graphs. USENIX ATC'19

^[2] Jia et al. Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc. MLSys'20

^[3] Fey et al. GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings. ICML'21

Category II

Slicing features across GPUs

Slicing features across GPUs

Broadcast

Category II: Slice-Based Methods

Category II: Slice-Based Methods

Pro: Balanced Workload

Con: Expensive Broadcast

Category III

Category III

Assigning one partition to one GPU

Assigning one partition to one GPU

Point-to-point

Category III: Partition-Based Methods

Category III: Partition-Based Methods

Pro: Reduced Communication The drawback is **not well studied**

BNS-GCN

BNS-GCN

- ◆ Identifying drawbacks of partition-based training
- ◆ Proposing a simple-yet-effective solution
- ◆ Providing theoretical and empirical validation

Similar to Data Parallelism

Difference: **Dependency** among Data

Communicating remote features

Computing local features

Identifying Drawbacks

Training Time Breakdown

Training Time Breakdown

Drawback I: Significant Communication Overhead

Training Memory Requirement

Reddit Dataset

Training Memory Requirement

Reddit Dataset

Training Memory Requirement

Drawback II: Unscalable Memory Requirement

Per-GPU Memory Distribution

ogbn-papers100M (192 partitions)

Per-GPU Memory Distribution

ogbn-papers100M (192 partitions)

Per-GPU Memory Distribution

ogbn-papers100M (192 partitions)

Drawback III: Imbalanced Memory across GPUs

What's the underlying cause?

The i-th partition has $n_{in}^{(i)}$ inner nodes and $n_{bd}^{(i)}$ boundary nodes

$$\operatorname{Vol}_{\operatorname{total}} = \sum_{i} \operatorname{Vol}(\mathcal{G}_i) = \sum_{i} n_{bd}^{(i)}$$

$$ext{Vol}_{ ext{total}} = \sum_{i} ext{Vol}(\mathcal{G}_i) = \sum_{i} n_{bd}^{(i)}$$

$$ext{Comm. Volume} \propto \# ext{Boundary Nodes}$$

$$ext{Vol}_{ ext{total}} = \sum_{i} ext{Vol}(\mathcal{G}_i) = \sum_{i} n_{bd}^{(i)}$$

$$ext{Comm. Volume} \propto \# ext{Boundary Nodes}$$

- Input Features
- 1 Neighbor Aggregation (e.g., mean)
- 2 Feature Update (e.g., MLP)

- Input Features
- 1 Neighbor Aggregation (e.g., mean)
- 2 Feature Update (e.g., MLP)

$$\operatorname{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + n_{bd}^{(i)}$$

- **Input Features**
- Neighbor Aggregation (e.g., mean)
- Feature Update (e.g., MLP)

$$\mathrm{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + n_{bd}^{(i)}$$

Aggregation: $n_{in}^{(i)} + n_{hd}^{(i)}$

Linear + Activation: $2n_{in}^{(i)}$

- I Significant Communication Overhead
- II Unscalable Memory Requirement
- III Imbalanced Memory across GPUs

What's the underlying cause?

- I Significant Communication Overhead
- II Unscalable Memory Requirement
- III Imbalanced Memory across GPUs

$$\operatorname{Vol}_{\operatorname{total}} = \sum_{i} \operatorname{Vol}(\mathcal{G}_i) = \sum_{i} \frac{n_{bd}^{(i)}}{n_{bd}}$$

$$\operatorname{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + \frac{n_{bd}^{(i)}}{}$$

- I Significant Communication Overhead
- II Unscalable Memory Requirement
- III Imbalanced Memory across GPUs

$$\operatorname{Vol}_{\operatorname{total}} = \sum_{i} \operatorname{Vol}(\mathcal{G}_i) = \sum_{i} \frac{n_{bd}^{(i)}}{n_{bd}}$$

$$\operatorname{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + n_{bd}^{(i)}$$

- I Significant Communication Overhead –
- II Unscalable Memory Requirement
- III Imbalanced Memory across GPUs

$$\operatorname{Vol}_{\operatorname{total}} = \sum_{i} \operatorname{Vol}(\mathcal{G}_{i}) = \sum_{i} \frac{n_{bd}^{(i)}}{n_{bd}}$$

$$\operatorname{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + n_{bd}^{(i)}$$

Contribution I: Identify the Underlying Cause

- I Significant Communication Overhead –
- II Unscalable Memory Requirement
- III Imbalanced Memory across GPUs

$$\operatorname{Vol}_{\operatorname{total}} = \sum_{i} \operatorname{Vol}(\mathcal{G}_{i}) = \sum_{i} \frac{n_{bd}^{(i)}}{n_{bd}}$$

$$\operatorname{Mem}(\mathcal{G}_i) \propto 3n_{in}^{(i)} + \frac{n_{bd}^{(i)}}{n_{bd}^{(i)}}$$

Boundary nodes are the cause

How to solve them? One stone three birds?

Step 1: Sampling each boundary node with probability p

Step 1: Sampling each boundary node with probability p Step 2: Removing unsampled nodes

Reducing communication volume

Reducing communication volume Reducing memory requirement

Reducing communication volume Reducing memory requirement Balancing memory across GPUs

Method

Variance

We compare the **variance** of feature approximation (lower is better)

Method	Variance	
BNS-GCN	$\mathcal{O}(\mathcal{B})$	boundary neighbor set
LADIES [NeurIPS'19]	$\mathcal{O}(\mathcal{N})$	neighbor set
FastGCN [ICLR'18]	$\mathcal{O}(\mathcal{V})$	global node set

^{*}We fix output nodes and sampling size

Method	Variance	
BNS-GCN	$\mathcal{O}(\mathcal{B})$	boundary neighbor set
LADIES [NeurIPS'19]	$\mathcal{O}(\mathcal{N})$	neighbor set
FastGCN [ICLR'18]	$\mathcal{O}(\mathcal{V})$	global node set

^{*}We fix output nodes and sampling size

Method	Variance	
BNS-GCN	$\mathcal{O}(\mathcal{B})$	boundary neighbor set
LADIES [NeurIPS'19]	$\mathcal{O}(\mathcal{N})$	neighbor set
FastGCN [ICLR'18]	$\mathcal{O}(\mathcal{V})$	global node set

^{*}We fix output nodes and sampling size

 $\mathcal{B} \subseteq \mathcal{N} \subseteq \mathcal{V} \Rightarrow BNS$ -GCN has the best feature approximation

Method	Variance
BNS-GCN	$\mathcal{O}(\mathcal{B} \gamma^2)$
LADIES [NeurIPS'19]	$\mathcal{O}(\left \mathcal{N}\right \gamma^{2})$
FastGCN [ICLR'18]	$\mathcal{O}(\left \mathcal{V}\right \gamma^{2})$
VR-GCN [ICML'18]	$\mathcal{O}(D\Delta\gamma^2)$
GraphSAGE [NIPS'17]	$\mathcal{O}(D\gamma^2)$

^{*}We fix output nodes and sampling size

More analysis is in our paper

Experiments

Experiment Setup

Considered Datasets

Reddit, ogbn-products, Yelp and ogbn-papers100M

Dataset Description

Name	# Nodes	# Edges	Environment
Reddit	233K	114M	
ogbn-products	2.4M	62M	10 RTX-2080Ti (11GB)
Yelp	716K	7.0M	
ogbn-papers100M	111M	1.6B	32 x (6 Tesla V100 (16GB))

Experiment Setup

Considered Datasets

Reddit, ogbn-products, Yelp and ogbn-papers100M

Benchmarked Baselines

ROC [MLSys'20] (swap-based) and CAGNET [SC'20] (slice-based)

Experiment Setup

Considered Datasets

Reddit, ogbn-products, Yelp and ogbn-papers100M

Benchmarked Baselines

ROC [MLSys'20] (swap-based) and CAGNET [SC'20] (slice-based)

Adopted Toolkits

DGL 0.7.0 and PyTorch 1.9.1

Reddit Dataset

Reddit Dataset

Baselines: throughput < 0.7 epochs/s

Reddit Dataset

Baselines: throughput < 0.7 epochs/s

Reddit Dataset

Reddit Dataset

Reddit Dataset

Partition-based training: throughput >1.2 epochs/s

Reddit Dataset

Partition-based training: throughput >1.2 epochs/s

Reddit Dataset

Reddit Dataset

Reddit Dataset

BNS-GCN: 8.9x~16.2x throughput improvement

BNS-GCN is consistently faster

Memory Saving

Memory Saving

Memory Saving

BNS-GCN saves the memory by up to 58%

Balancing Memory Requirement

ogbn-papers100M (192 partitions)

Balancing Memory Requirement

ogbn-papers100M (192 partitions)

Without BNS: >75% partitions utilize <60% memory

Balancing Memory Requirement

ogbn-papers100M (192 partitions)

Without BNS: >75% partitions utilize <60% memory With BNS: nearly all partitions utilize >80% memory

Training Accuracy Comparison

Dataset	Reddit		ogbn-products			Yelp			
# Partitions	2	4	8	5	8	10	3	6	10

Dataset	Reddit		ogbn-products			Yelp			
# Partitions	2	4	8	5	8	10	3	6	10
BNS-GCN (p=1.0)	97.11	97.11	97.11	79.14	79.14	79.14	65.26	65.26	65.26

BNS-GCN (p=1.0) is equivalent to vanilla training

Dataset	Reddit		ogbn-products			Yelp			
# Partitions	2	4	8	5	8	10	3	6	10
BNS-GCN (p=1.0)	97.11	97.11	97.11	79.14	79.14	79.14	65.26	65.26	65.26
BNS-GCN (p=0.1)	97.15	97.14	97.18	79.36	79.48	79.30	65.32	65.26	65.34
BNS-GCN (p=0.01)	97.09	97.03	96.91	79.43	79.28	79.21	65.27	65.31	65.29

BNS-GCN (p=1.0) is equivalent to vanilla training Sampling boundary nodes maintains the accuracy

Dataset	Reddit		ogbn-products			Yelp			
# Partitions	2	4	8	5	8	10	3	6	10
BNS-GCN (p=1.0)	97.11	97.11	97.11	79.14	79.14	79.14	65.26	65.26	65.26
BNS-GCN (p=0.1)	97.15	97.14	97.18	79.36	79.48	79.30	65.32	65.26	65.34
BNS-GCN (p=0.01)	97.09	97.03	96.91	79.43	79.28	79.21	65.27	65.31	65.29
BNS-GCN (p=0.0)	97.03	96.87	96.81	78.65	78.83	78.79	65.28	65.27	65.23

BNS-GCN (p=1.0) is equivalent to vanilla training Sampling boundary nodes maintains the accuracy Dropping boundary nodes decreases the accuracy

Dataset	Reddit			ogk	ogbn-products			Yelp		
# Partitions	2	4	8	5	8	10	3	6	10	
BNS-GCN (p=1.0)	97.11	97.11	97.11	79.14	79.14	79.14	65.26	65.26	65.26	
BNS-GCN (p=0.1)	97.15	97.14	97.18	79.36	79.48	79.30	65.32	65.26	65.34	
BNS-GCN (p=0.01)	97.09	97.03	96.91	79.43	79.28	79.21	65.27	65.31	65.29	
BNS-GCN (p=0.0)	97.03	96.87	96.81	78.65	78.83	78.79	65.28	65.27	65.23	
FastGCN [ICLR'18]		93.7			60.42			26.5		
GraphSAGE [NIPS'17]	95.4			78.70			63.4			
AS-GCN [NIPS'18]	96.3			ООМ			ООМ			
LADIES [NeurIPS'19]	94.3			77.46			60.2			
VR-GCN [ICML'18]	96.3			ООМ			64.0			
ClusterGCN [KDD'19]	96.6			78.97			60.9			
GraphSAINT [ICLR'20]		96.6		79.08			65.3			

Full-graph training reaches higher accuracy than sampling-based methods

- ♦ Identified three key drawbacks in partition-based GCN training
 - Underlying cause: boundary nodes

- ◆ Identified three key drawbacks in partition-based GCN training
 - Underlying cause: boundary nodes
- ◆ Proposed Boundary Node Sampling (BNS-GCN) to tackle the three drawbacks

- ◆ Identified three key drawbacks in partition-based GCN training
 - Underlying cause: boundary nodes
- ◆ Proposed Boundary Node Sampling (BNS-GCN) to tackle the three drawbacks
- ◆ Validated BNS-GCN in both theory and experiments

- ◆ Identified three key drawbacks in partition-based GCN training
 - Underlying cause: boundary nodes
- ◆ Proposed Boundary Node Sampling (BNS-GCN) to tackle the three drawbacks
- ◆ Validated BNS-GCN in both theory and experiments

Backup Slides

Time Breakdown

Time Breakdown

Communication overhead is reduced by 74%~93%

Training Convergence

Training Convergence

On Reddit: p=0 has the worst convergence

On Yelp: p=0/1 suffers from overfitting

BNS-GCN with Random Partition

Table 7: Test score (%) of BNS-GCN on top of random partition, where +/- shows the accuracy difference from BNS-GCN on top of METIS in Table 4.

Method	Reddit (8 partitions)		ogbn-products	(10 partitions)	Yelp (10 partitions)		
Random+BNS $(p = 1.0)$	97.11	+0.00	79.14	+0.00	65.26	+0.00	
Random +BNS $(p = 0.1)$	96.95	-0.20	79.57	+0.27	65.18	-0.16	
Random +BNS $(p = 0.0)$	93.37	-3.47	75.39	-3.40	64.92	-0.31	

Table 8: Training efficiency improvement of BNS-GCN (p = 0.1) on top of different partition methods.

Dataset	Thro	ughput	Memory # Bounda			ary Nodes
Dataset	METIS	Random	METIS	Random	METIS	Random
Reddit (8 partitions)	3.1×	5.0×	0.47×	0.36×	460k	1,016k
ogbn-products (10 partitions)	3.4×	$7.3 \times$	0.75×	$0.31 \times$	1,848k	16,797k
Yelp (10 partitions)	3.1×	$5.1 \times$	0.83×	$0.49 \times$	649k	2,026k

BNS-GCN vs DropEdge vs BES

Table 9: Comparison between BNS-GCN and edge sampling methods, DropEdge and Boundary Edge Sampling (BES).

Dataset	Method	Epoch Comm (MB)	Epoch Time (sec)	Test Score (%)
Reddit	DropEdge	301.3	0.613	97.12
	BES	207.9	0.484	97.16
(2 partitions)	BNS-GCN	30.4	0.319	97.17
aghn meaduata	DropEdge	1364.0	0.938	79.38
ogbn-products	BES	521.1	0.551	79.31
(5 partitions)	BNS-GCN	138.7	0.388	79.36
Voln	DropEdge	718.7	0.606	65.30
Yelp (3 partitions)	BES	195.3	0.328	65.30
	BNS-GCN	75.7	0.270	65.32